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to n i t r ~ g e n . ~  Therefore, in order to prove this hypotesis we 
monitored the course of the reaction of 0,O-diisopropyl- 
phosphoroselenoic acid ( I f )  with DCC (Figure 1)" by the 
low-temperature 31P WMR. Thus, a solution of DCC in ether 
was treated with an equimolar amount of lf at -80 "C and the 
resulting mixture was examined at 24.3 MHz using 31P Fourier 
transform NMR with proton noise decoupling.6 Two signals 
of high intensity were observed a t  Blip -48.5 and -10.3 ppm. 
The first of them was aetributed to the salt of seleno acid If 
with DCC. I t  is interesting to point out that the coupling be- 
tween phosphorus and selenium, Vi ip - : :~~  = 789 Hz, was 
observed, providing additional support of this a~s ignment .~  
The 6 -10.3 signal with the characteristic coupling constant 
l J ~ l p - - ; ~ e  = 410 Hz corresponds undoubtedly to the expected 
Se -diisopropylphosphoryl-N,N'-dicyclohexylisoselenourea 
(2f).* The spectrum showed also the low intensity signal at  
t 2 . 2  ppm corresponding to the already characterized N-di- 
isopropylphosphoryl-N,N'-dicyclohexylselenoura (3f) and 
two doublets centered at  -52 and t16.5 ppm due to tetra- 
isopropyl monoselenopyrophosphate. Then we raised the 
temperature to -50 O C and observed the spectrum every 10 
min. I t  showed gradual decrease of the signals at  6 -48.5 and 
-10.3 ppm and at  the same time fast increase of the signal due 
to 3f. The signals due to 3f and selenopyrophosphate in a ratio 
4:l were the only signals in the spectrum a t  room tempera- 
ture. 

The unstable adducts 2 and 4 were observed similarly using 
other acids 1 as the reaction  component^.^ Their spectral 
characteristics are given in Table II.loJ1 

The mechanism of the phosphorylation by means of N- 
phosphorylthio(se1eno)ureas 3 is under current investiga- 
tion. 

Supplementary Material Available. Tables I and 11, including 
physical and spectral properties of the adducts 2, 3, 4, and 5,  and 
Figure 1, showing the lowtemperature FT NMR study of the 
reaction between DCC and I f  (3 pages). Ordering information is given 
on any current masthead page. 
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The proton-undecoupled 31P NMR s ectrum revealed that the signals at 

nance signal at 4-2.2 ppm is a double triplet due to an addltional coupling 

' J 3 1 p - 7 7 ~ ~  = 910 Hz. 
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(1 1) See paragraph at the end of paper about supplementary material. 
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Sesterterpenes. 1. Stereospecific Construction 
of t h e  Ceroplastol and Ophiobolin Ring Systems 
via a Common Bicyclic Intermediate 

Summary: The ring systems present in the two major classes 
of ophiobolane sesterterpenes have been obtained via a 
common bicyclic intermediate. In each case, the eight-mem- 
bered ring was constructed by fragmentation of an appro- 
priately functionalized bicyclo[3.3.l]nonane ring system. 

Sir: We have been investigating, for some time, the develop- 
ment of protocols for the synthesis of various classes of 
sesterterpenes. Among those under study are the two major 
stereochemical subclasses of the ophiobolane system exem- 
plified by ophiobolin F (1)l and ceroplastol I (2).2 Recent re- 
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ports from other laboratories have prompted us to report our 
studies in this area.334 

The structures of 1 and 2 present considerable synthetic 
challenges, since they possess four asymmetric centers about 
the central eight-membered ring. We were intrigued, however, 
by the fact that the systems differ in relative stereochemistry 
a t  only one center (C-2) about the eight-membered ring, al- 
though they possess different absolute stereochemistry. To  
exploit this observation, we undertook the construction of a 
bicyclic intermediate, ketone 3, which we felt might be readily 
elaborated to intermediates of either stereochemical series. 
I t  was hoped that the trienol lactones 4, which were plausibly 
derived from 3, would serve as efficient precursors of bicy- 
clo[3.3.l]nonanones of general structure 5, and ultimately of 

H 6  3 4% R CY-H 
b, R P-H 5 
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the required functionalized cyclooctenes by fragmentation. 
We have demonstrated the successful application of this 
strategy as described below. 

Treatment of the pyrrolidine enamine of cyclopentanone 
with isopropenyl ethyl ketone under modified conditions 
provided bicyclic ketone 6 [bp 84-88 "C (1.6 mm)] in 59% yield 
(Scheme I).616 To produce the required cis-acrylate side chain, 
we employed the cross-conjugated enolate of 6 (LiICA, -28 
"C) to control regiochemistry.7 Quenching with cis-3-cMo- 
roacrylate (1.1 equiv, -78 OC, 5 h) afforded, by addition- 
elimination, the required cis-acrylate ester 7 [bp 125 "C (0.4 
mm)], NMR 6 5.90 (s,, 2 H),  3.65 (a, 3 H), in 74% yield. This is 
the first example of addition-elimination to a cross-conju- 

Figure 1. A computer-generated perspective drawing of 10. Hydro- 
gens are omitted for clarity. 

gated enolate, and it proceeds with clean retention (for the 
trans isomer also). I t  appears that use of the cis- and trans- 
chloroacrylates will be a valuable method for stereospecific 
introduction of an acrylate side chain in some cases. After 
saponification of 7 (1.1 equiv of KOH, 25 "C 48 h) which 
provided 3,8 the crystalline (mp 72.5-75 "C) enol lactone 
4a [NMR 6 6.7 (d, J = 10 Hz, 1 H)] was obtained as the major 
product (3:l) under acidic lactonization conditions [HC104- 
(cat), 10 equiv of AczO, 0 "C, 2 m] in -80% yield.9 Epimeri- 
zation occurs during lactone formation, leading to 4a in the 
ceroplastol series.1° Isolation of the intermediate mixed an- 
hydride and completion of lactonization under basic condi- 
tions, shown not to equilibrate the epimers, led to the same 
major product, suggesting equilibration prior to cyclization. 
Alternatively, 4b [NMR 6 6.6 (d, J = 10 Hz, 1 H)] is produced 
as the major isomer (7:l) upon lactonization under basic 
conditions (NaOAc/AcsO, 150 "C).ll 

Control of stereochemistry during introduction of the 
three-carbon side chain must be assured as this operation sets 
the geometry of the key trans BC ring junction required for 
both series. Treatment of 4a with the mixed cuprate derived 
from tert-  butylacetyene and the ethyl vinyl ether protected 
1-bromo-3-propanol (1.7 equiv, -40 - 0 "C, 18 h) provided 
the diene lactone 8 (56%).12 Lactone 8 was reductively rear- 
ranged (1.5 equiv of DIBAL, 0 "C, 2 h) to a mixture of ketols, 
which upon Jones oxidation and esterification (CH2N2) af- 
forded the crystalline (mp 114.5-115 "C) diketo ester 9 (-35% 
from 7).12J3 Reduction of 9 with Li(O-t-Bu),H (1.5 equiv), 
tosylation (0 "C, py), and fragmentation (4.0 equiv of 
NaOCH3, 65 "C) provided the crystalline diester 10 (mp 
111-112.5 "C) in approximately 33% overall yield.14 The 
structure of 10 was confirmed by single-crystal x-ray analysis 
to have the stereochemistry shown15 (Figure 1). The ring 
system was completed by Dieckmann cyclization (3.0 equiv 
of LiHMDS, 115 "C, 4 h) of 10 to 11 (-40%) [NMR 6 5.3-5.9 
(m, 2 HI; Mt  calcd for C16Hn20 230.1670, found 230,16601. 

The stereochemical outcome of the conjugate addition is 
in accord with the expected stereoelectronic control usually 
observed in organocuprate chemistry.19 We have found in this 
case, as well as a number of related systems, that enol lactones 
serve as excellent acceptors, although the corresponding 
open-chain esters are sluggish and few examples of additions 
to lactones have been recorded. The addition to lactone 4b 
required for the ophiobolin series is, however, somewhat more 
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Figure 2. 

difficult. Examination of a model (Figure 2) suggests that the 
required mode of addition, while favored stereoelectronically, 
is rather more hindered than addition from the outside of the 
concave ring system. Precedent exists that steric hindrance 
to approach of the reagent can markedly influence the ste- 
reochemical outcome? 

Treatment of 4b under comparable conditions with the 
mixed cuprate described above (1.7 equiv, -40 - 0 "C, 18 h) 
provided adduct 12 as the major product (50??).21 In this case, 
stereoelectronic control still dominates in spite of the steric 
hindrance. Lactone 12 was then elaborated to ketone 15 by a 
comparable series of steps as those described for 8 to 11 
(Scheme I). 

We have examined two methods for introduction of the final 
asymmetric center in the ceroplastol series. Treatment of 
lactone 8 with KOH in ethanol (1.8 equiv, 25 "C, 18 h) afforded 
16. Reduction of 16 with Li/NH3 (excess) and reoxidation 
(Cr03/acetone, 0 "C) gave 17 in -60% overall yield.22 As can 
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be seen, transformation of acid 17 via the lactone rearrange- 
ment-fragmentation sequence would be expected to lead to 
ester 18 possessing the correct relative asymmetry for the 
~eroplastols.~0J3 Alternatively, diketo ester 9 undergoes ste- 
reoselective epoxidation (MCPBA/CH2C12, 25 "C), affording 
ester 19 in -70% yield. Rearrangement of 19 with boron tri- 
fluoride etherate (1.05 equiv, CH2C12, -78 "C) gave the de- 
sired triketone 20 [IR (cm-l) 1740, 1735, 17151 in which the 

H H 

19 20 

final asymmetric center is introduced stereospecifically by 
migration of the adjacent @ hydrogen. Again, triketone 20 
possesses all the asymmetry required for the ceroplastol sys- 
tem. l 0 ~ 3  

We are currently exploiting this methodology in our ap- 
proaches to the natural substances 1 and 2. 
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Supplementary Material Available: Fractional coordinates and 
temperature factors (Table I), b o n d  distances (Table II), and b o n d  
angles (Table 111) for  compound 10 (4 pages). Ordering in format ion 
is given o n  any current masthead page. 
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A Convenient Synthesis of Progesterone from 
Stigmasterol 

Summary:  A convenient synthesis of progesterone from 
stigmasterol is described involving as the key step the high 
yield photooxygenation of the 20-aldehyde 5 to the 20-ketone 
10. 

Sir: One of the most important manufacturing processes' of 
the female sex hormone progesterone (l), which is also a key 
intermediate in the synthesis of corticosteroids, starts with 
stigmasterol (2). The final steps involve selective conversion 
of the aldehyde 3 to the 22-enamine 4, followed by oxidation 

2 3 , R = < n  
CHO 

4,  R = CHN 3 
1 , R = O  

under a variety of Conditions (ozonization, photooxidation) 
to progesterone. 

During a recent synthesis2 of novel marine sterols, we en- 
countered an tinexpected oxidation reaction: epimerization 
of aldehyde 5 with methanolic potassium hydroxide for 60 h, 
followed by reduction with lithium aluminum hydride yielded, 
in addition to the expected mixture of alcohols 6, the epimeric 
20-hydroxy pregnane derivatives 7 in 35% yield (Scheme I). 
This side reaction, which probably proceeds via the inter- 
mediate hydroperoxide3 9, prompted a more detailed study 
which has now resulted in a simple one-step conversion of the 
aldehyde 5 into the corresponding 20-ketone 10 and thence 
to progesterone (1). 
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Stigmasterol (1) can be converted in excellent overall yield4 
to the 22-aldehyde 5,l .O g of which was dissolved in 50 mL of 
10% methanolic potassium hydroxide solution and cooled to 
0 "C. After the addition of 15 mg of rose bengal sensitizer, 
oxygen was bubbled through the solution for 10 min with 
continuous irradiation from a 1000 W tungsten lamp. The 
reaction mixture was poured into water, extracted with ether, 
and washed successively with dilute hydrochloric acid, satu- 
rated sodium bicarbonate solution, and water. Evaporation 
of the dried ether extract gave the 20-ketone 10, which was 
directly hydrolyzed by heating for 15 min under reflux in 20% 
aqueous dioxane containing 100 mg of p -toluenesulfonic acid, 
to afford the standard progesterone precursor pregn-5-en- 
3P-ol-20-one (11) in 94% overall yield (based on 5 ) .  The Op- 
penauer oxidation of 11 to progesterone (1) is a standard 
commercially utilized operation.5 

When the reaction was carried out in the absence of light 
or of the sensitizer no detectable amount of the ketone 10 was 
formed. Under identical conditions, but in the presence of 
Dabco? a singlet oxygen. quencher, only a 35% conversion (GC 
analysis) to 10 was realized. These reactions confirm that the 
20-ketopregnane 10 is formed by a photooxidation process 
probably via the dioxetane intermediate 12 formed from the 
enol 8 by a (2 + 2) cycloaddition process; with singlet oxy- 
gen. 

The reaction sequence outlined in this communication, 
coupled with the facile high-yield conversion4 of stigmasterol 
(2) to the 22-aldehyde 5,  provides a very efficient and rela- 
tively inexpensive method for the synthesis of pregnenolone 
(1 1) and hence of progesterone. 

An attempt was also made to eliminate the need for the i -  
methyl ether protecting group of 5 by carrying out the sensi- 
tized photooxygenation directly on the unprotected keto al- 
dehyde 3. While progesterone (1) was formed in 60% yield, it 
was invariably contaminated by -10% each of the 6-keto al- 
dehyde 138 and the trione 14: thus making this alternative 
and much shorter synthesis of progesterone (1) a less efficient 
one. 
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